Burr-Brown Products from Texas Instruments
www.ti.com

SINGLE-SUPPLY, RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
 microAmplifier ${ }^{\text {™ }}$ Series

FEATURES

- RAIL-TO-RAIL INPUT/OUTPUT
- MICRO SIZE PACKAGES
- WIDE BANDWIDTH: 5.5 MHz
- HIGH SLEW RATE: 6V/us
- LOW THD+NOISE: 0.0007% ($\mathrm{f}=1 \mathrm{kHz}$)
- LOW QUIESCENT CURRENT: $850 \mu \mathrm{~A} / \mathrm{chan}$
- SINGLE, DUAL, AND QUAD VERSIONS

DESCRIPTION

OPA343 series rail-to-rail CMOS operational amplifiers are designed for low-cost, miniature applications. They are optimized for low-voltage, single-supply operation. Rail-to-rail input/output and high-speed operation make them ideal for driving sampling Analog-to-Digital (A/D) converters. They are also well suited for general-purpose and audio applications as well as providing I/V conversion at the output of Digital-to-Analog (D/A) converters. Single, dual, and quad versions have identical specifications for design flexibility.

SOT-23-5

SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 5.5 V

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$.
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

PARAMETER	CONDITION	OPA343NA, UAOPA2343EA, UAOPA4343EA, UA, NA			UNITS			
		MIN	TYP(1)	MAX				
OFFSET VOLTAGE Input Offset Voltage V_{OS} vs Temperature $\mathrm{dV}_{\mathrm{OS}} / \mathrm{dT}$ vs Power Supply Over Temperature Channel Separation, dc	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \pm 2 \\ & \pm 3 \\ & 40 \\ & \\ & 0.2 \end{aligned}$	$\begin{gathered} \pm 8 \\ 200 \\ 200 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \end{gathered}$			
INPUT BIAS CURRENT Input Bias Current Over Temperature Input Offset Current			$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 60 \\ & \pm 10 \end{aligned}$	pA pA pA			
NOISE Input Voltage Noise, $f=0.1$ to 50 kHz Input Voltage Noise Density, $f=1 \mathrm{kHz}$ Current Noise Density, $f=1 \mathrm{kHz}$			$\begin{gathered} 8 \\ 25 \\ 3 \\ \hline \end{gathered}$		$\mu \mathrm{Vrms}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{f} \mathrm{A} / \sqrt{\mathrm{Hz}}$			
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio $V_{C M}$ CMRR	$\begin{gathered} -0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+)-1.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<5.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=2.7 \mathrm{~V},-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & -0.3 \\ & 74 \\ & 60 \\ & 54 \end{aligned}$	$\begin{aligned} & 92 \\ & 75 \\ & 70 \end{aligned}$	$(\mathrm{V}+$) +0.3	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$			
INPUT IMPEDANCE Differential Common-Mode			$\begin{aligned} & 10^{13}\| \| 3 \\ & 10^{33} \\| 6 \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$			
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Temperature Over Temperature Over Temperature	$\begin{array}{r} \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, 5 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-5 \mathrm{mV} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, 5 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<\left(\mathrm{V}_{+}\right)-5 \mathrm{mV} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, 50 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-50 \mathrm{mV} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, 50 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-50 \mathrm{mV} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, 200 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-200 \mathrm{mV} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, 200 \mathrm{mV}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-200 \mathrm{mV} \end{array}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 92 \\ & 92 \end{aligned}$	$\begin{aligned} & 120 \\ & 117 \\ & 110 \end{aligned}$		dB dB dB dB dB dB			
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1\% 0.01\% Overload Recovery Time Total Harmonic Distortion + Noise THD+N	$\begin{gathered} G=1 \\ V_{S}=5 V, G=1, C_{L}=100 \mathrm{pF} \\ V_{S}=5 \mathrm{~V}, 2 \mathrm{~V} \text { Step, } C_{L}=100 \mathrm{pF} \\ V_{S}=5 \mathrm{~V}, 2 \mathrm{~V} \text { Step, } C_{L}=100 \mathrm{pF} \\ V_{I N} \cdot G=V_{S} \\ V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3 \mathrm{Vp}-\mathrm{p}^{(2)}, \mathrm{G}=1, \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		$\begin{gathered} 5.5 \\ 6 \\ 1 \\ 1.6 \\ 0.2 \\ 0.0007 \\ \hline \end{gathered}$		MHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ \%			
OUTPUT Voltage Output Swing from Rail(3) Over Temperature Over Temperature Over Temperature Short-Circuit Current Capacitive Load Drive ${ }^{\mathrm{C}_{\mathrm{LOAD}}}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 100 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 100 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 100 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 100 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 92 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}} \geq 92 \mathrm{~dB} \end{gathered}$		1 10 40 ± 50 Typical \mathbf{C}	$\begin{gathered} 5 \\ 5 \\ 50 \\ 50 \\ 200 \\ 200 \end{gathered}$	mV mV mV mV mV mV \qquad			
POWER SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) Over Temperature	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \end{aligned}$	2.7	$\begin{gathered} 2.5 \text { to } 5.5 \\ 0.85 \end{gathered}$	$\begin{gathered} 5 \\ 1.25 \\ \mathbf{1 . 4} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$			
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT-23-5 Surface Mount MSOP-8 Surface Mount SO-8 Surface Mount SSOP-16 Surface Mount SO-14 Surface Mount TSSOP-14 Surface Mount		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 150 \\ & 100 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & +85 \\ & +125 \\ & +150 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & 0^{\circ} \mathrm{C} / \mathrm{W} \\ & 0^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$			

NOTES: (1) $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$. (2) $\mathrm{V}_{\text {OUT }}=0.25 \mathrm{~V}$ to 3.25 V . (3) Output voltage swings are measured between the output and power supply rails.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Su 7.5V
Signal Input Terminals, Voltage ${ }^{(2)}$ \qquad $(\mathrm{V}-)-0.5 \mathrm{~V}$ to $(\mathrm{V}+)+0.5 \mathrm{~V}$ Current ${ }^{(2)}$ \qquad 10 mA	
Output Short-Circuit ${ }^{(3)}$	Continuous
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature $150^{\circ} \mathrm{C}$
Lead Temperature (soldering,	$300^{\circ} \mathrm{C}$

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current-limited to 10 mA or less. (3) Short-circuit to ground, one amplifier per package.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ${ }^{(1)}$	TRANSPORT MEDIA
Single OPA343NA OPA343UA	5-Lead SOT-23-5 SO-8 Surface-Mount	$\begin{gathered} 331 \\ " \\ 182 \\ " \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{B} 43 \\ " \\ \text { OPA343UA } \\ " \end{gathered}$	$\begin{gathered} \text { OPA343NA/250 } \\ \text { OPA343NA/3K } \\ \text { OPA343UA } \\ \text { OPA343UA/2K5 } \end{gathered}$	Tape and Reel Tape and Reel Rails Tape and Reel
Dual OPA2343EA OPA2343UA	MSOP-8 Surface-Mount SO-8 Surface-Mount	$\begin{gathered} 337 \\ " \\ 182 \\ " \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { C43 } \\ " \\ \text { OPA2343UA } \\ \hline " \end{gathered}$	$\begin{gathered} \text { OPA2343EA/250 } \\ \text { OPA2343EA/2K5 } \\ \text { OPA2343UA } \\ \text { OPA2343UA/2K5 } \end{gathered}$	Tape and Reel Tape and Reel Rails Tape and Reel
Quad OPA4343EA OPA4343UA OPA4343NA	$\begin{gathered} \text { SSOP-16 Surface-Mount } \\ \text { SO-14 Surfac-Mount } \\ \text { " } \\ \text { TSSOP-14 Surface-Mount } \end{gathered}$	$\begin{gathered} 322 \\ " \\ 235 \\ " \\ 357 \\ \text { " } \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { OPA4343EA } \\ " \\ \text { OPA4343UA } \\ " \\ \text { OPA4343NA } \end{gathered}$	OPA4343EA/250 OPA4343EA/2K5 OPA4343UA OPA4343UA/2K5 OPA4343NA/250 OPA4343NA/2K5	Tape and Reel Tape and Reel Rails Tape and Reel Tape and Reel Tape and Reel

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "OPA2343EA/2K5" will get a single 2500 piece Tape and Reel.

TYPICAL PERFORMANCE CURVES

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

SHORT-CIRCUIT CURRENT vs TEMPERATURE

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

OUTPUT VOLTAGE SWING vs OUTPUT CURRENT

OFFSET VOLTAGE PRODUCTION DISTRIBUTION

Offset Voltage (mV)

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

SMALL-SIGNAL STEP RESPONSE
$C_{L}=100 \mathrm{pF}$

SMALL-SIGNAL OVERSHOOT vs LOAD CAPACITANCE

LARGE-SIGNAL STEP RESPONSE
$C_{L}=100 \mathrm{pF}$

APPLICATIONS INFORMATION

OPA343 series op amps are fabricated on a state-of-the-art 0.6 micron CMOS process. They are unity-gain stable and suitable for a wide range of general-purpose applications. Rail-to-rail input/output make them ideal for driving sampling A/D converters. In addition, excellent ac performance makes them well-suited for audio applications. The class AB output stage is capable of driving 600Ω loads connected to any point between $\mathrm{V}+$ and ground.
Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications. Figure 1 shows the input and output waveforms for the OPA343 in unity-gain configuration. Operation is from a single +5 V supply with a $10 \mathrm{k} \Omega$ load connected to $\mathrm{V}_{\mathrm{S}} / 2$. The input is a $5 \mathrm{Vp}-\mathrm{p}$ sinusoid. Output voltage is approximately $4.98 \mathrm{Vp}-\mathrm{p}$.
Power-supply pins should be bypassed with $0.01 \mu \mathrm{~F}$ ceramic capacitors.

FIGURE 1. Rail-to-Rail Input and Output.

OPERATING VOLTAGE

OPA343 series op amps are fully specified from +2.7 V to +5 V . However, supply voltage may range from +2.5 V to +5.5 V . Parameters are guaranteed over the specified supply range-a unique feature of the OPA343 series. In addition, many specifications apply from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Most behavior remains virtually unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltages or temperature are shown in the Typical Performance Curves.

RAIL-TO-RAIL INPUT

The input common-mode voltage range of the OPA343 series extends 500 mV beyond the supply rails. This is achieved with a complementary input stage-an N -channel input differential pair in parallel with a P-channel differential pair, as shown in Figure 2. The N-channel pair is active for input voltages close to the positive rail, typically (V+) -1.3 V to 500 mV above the positive supply. The P-channel pair is on for inputs from 500 mV below the negative supply to approximately $(\mathrm{V}+)-1.3 \mathrm{~V}$.

There is a small transition region, typically ($\mathrm{V}+$) -1.5 V to $(\mathrm{V}+)-1.1 \mathrm{~V}$, in which both input pairs are on. This 400 mV transition region can vary $\pm 300 \mathrm{mV}$ with process variation. Thus, the transition region (both stages on) can range from $(\mathrm{V}+)-1.8 \mathrm{~V}$ to $(\mathrm{V}+)-1.4 \mathrm{~V}$ on the low end, up to $(\mathrm{V}+)$ -1.2 V to $(\mathrm{V}+)-0.8 \mathrm{~V}$ on the high end. Within the 400 mV transition region PSRR, CMRR, offset voltage, offset drift, and THD may be degraded compared to operation outside this region.
A double-folded cascode adds the signal from the two input pairs and presents a differential signal to the class $A B$ output stage. Normally, input bias current is approximately 200fA, however, input voltages exceeding the power supplies by

FIGURE 2. Simplified Schematic.
more than 500 mV can cause excessive current to flow in or out of the input pins. Momentary voltages greater than 500 mV beyond the power supply can be tolerated if the current on the input pins is limited to 10 mA . This is easily accomplished with an input resistor, as shown in Figure 3. Many input signals are inherently current-limited to less than 10 mA , therefore, a limiting resistor is not required.

FIGURE 3. Input Current Protection for Voltages Exceeding the Supply Voltage.

RAIL-TO-RAIL OUTPUT

A class AB output stage with common-source transistors is used to achieve rail-to-rail output. For light resistive loads ($>50 \mathrm{k} \Omega$), the output voltage is typically a few millivolts from the supply rails. With moderate resistive loads ($2 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$), the output can swing to within a few tens of millivolts from the supply rails and maintain high open-loop gain. See the typical performanc curve "Output Voltage Swing vs Output Current."

CAPACITIVE LOAD AND STABILITY

OPA343 series op amps can drive a wide range of capacitive loads. However, all op amps under certain conditions may become unstable. Op amp configuration, gain, and load value are just a few of the factors to consider when determining stability. An op amp in unity gain configuration is the most susceptible to the effects of capacitive load. The
capacitive load reacts with the op amp's output resistance, along with any additional load resistance, to create a pole in the small-signal response which degrades the phase margin. In unity gain, OPA343 series op amps perform well, with a pure capacitive load up to approximately 1000 pF . Increasing gain enhances the amplifier's ability to drive more capacitance. See the typical performance curve "Small-Signal Overshoot vs Capacitive Load."

One method of improving capacitive load drive in the unity gain configuration is to insert a 10Ω to 20Ω resistor in series with the output, as shown in Figure 4. This significantly reduces ringing with large capacitive loads. However, if there is a resistive load in parallel with the capacitive load, R_{S} creates a voltage divider. This introduces a dc error at the output and slightly reduces output swing. This error may be insignificant. For instance, with $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{S}}=20 \Omega$, there is only about a 0.2% error at the output.

DRIVING A/D CONVERTERS

OPA343 series op amps are optimized for driving medium speed (up to 100 kHz) sampling A/D converters. However, they also offer excellent performance for higher-speed converters. The OPA343 series provides an effective means of buffering the A/D's input capacitance and resulting charge injection while providing signal gain. For applications requiring high accuracy, the OPA340 series is recommended.
Figures 5 and 6 show the OPA343 driving an ADS7816. The ADS7816 is a 12-bit, micro-power sampling converter in the tiny MSOP-8 package. When used with the miniature package options of the OPA343 series, the combination is ideal for space-limited and low-power applications. For further information consult the ADS7816 data sheet.
With the OPA343 in a noninverting configuration, an RC network at the amplifier's output can be used to filter high frequency noise in the signal (see Figure 5). In the inverting configuration, filtering may be accomplished with a capacitor across the feedback resistor (see Figure 6).

FIGURE 4. Series Resistor in Unity-Gain Configuration Improves Capacitive Load Drive.

FIGURE 5. OPA343 in Noninverting Configuration Driving ADS7816.

FIGURE 6. OPA343 in Inverting Configuration Driving ADS7816.

FIGURE 7. Speech Bandpass Filter.

FIGURE 8. Transimpedance Amplifier.

PACKAGING INFORMATION

ORDERABLE DEVICE	STATUS(1)	PACKAGE TYPE	PACKAGE DRAWING	PINS	PACKAGE QTY
OPA2343EA/250	ACTIVE	VSSOP	DGK	8	250
OPA2343EA/2K5	ACTIVE	VSSOP	DGK	8	2500
OPA2343UA	ACTIVE	SOIC	D	8	100
OPA2343UA/2K5	ACTIVE	SOIC	D	8	2500
OPA343NA/250	ACTIVE	SOP	DBV	5	250
OPA343NA/3K	ACTIVE	SOP	DBV	5	3000
OPA343UA	ACTIVE	SOIC	D	8	100
OPA343UA/2K5	ACTIVE	SOIC	D	8	2500
OPA4343EA/250	ACTIVE	SSOP	DBQ	16	250
OPA4343EA/2K5	ACTIVE	SSOP	DBQ	16	2500
OPA4343NA/250	ACTIVE	TSSOP	PW	14	250
OPA4343NA/2K5	ACTIVE	TSSOP	PW	14	2500
OPA4343UA	ACTIVE	SOIC	SOIC	D	14
OPA4343UA/2K5	NRND	D	14	2500	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com	Audio
Data Converters	dataconverter.ti.com	Automotive
DSP	dsp.ti.com	Broadband
Interface	interface.ti.com	Digital Control
Logic	logic.ti.com	Military
Power Mgmt	power.ti.com	Optical Networking
Microcontrollers	microcontroller.ti.com	Security
		Telephony
		Video \& Imaging
		Wireless

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

